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Summary

The intraclass version of kappa coefficient has been commonly applied as a measure of agreement for
two ratings per subject with binary outcome in reliability studies. We present an efficient statistic for
testing the strength of kappa agreement using likelihood scores, and derive asymptotic power and
sample size formula. Exact evaluation shows that the score test is generally conservative and more
powerful than a method based on a chi-square goodness-of-fit statistic (DONNER and ELIASZIW, 1992,
Statistics in Medicine 11, 1511-1519). In particular, when the research question is one directional, the
one-sided score test 1s substantially more powerful and the reduction in sample size is appreciable.
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1. Introduction

The kappa coefficient has been widely accepted as a measure of reliability be-
tween two ratings per subject on a binary scale. There are two types of kappa,
Scotr’s index (1955) and CoHEN’s kappa (1960). The former is based on a model
that the probability of positive classification by the 1% rating and that by the 2™
ratings are the same while the latter assumes that two probabilities are different. In
this paper, we consider the former which is the intraclass version of the kappa or
intra-rater correlation coefficient. Scott’s kappa has also been discussed by BLOCK
and KRAMER (1989) and DUNN (1989). It is interesting to note that the kappa is
algebraically equivalent to the inbreeding coefficient (WRIGHT, 1951) in population
genetics. Recently, DONNER and ELiAsziw (1992) have proposed a statistical meth-
od in which testing significance, power and sample size were obtained using a
chi-square goodness-of-fit procedure. The method is based on a two-sided test.
When researchers are interested in the strength of agreement and test whether the
kappa coefficient is at least greater than a reasonable value, then a one-sided test
procedure is appropriate. In this paper, we develop an efficient statistical method
for inference about the coefficient of agreement, the related power and sample size
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determination. In Section 2, we define notation and model, and derive the likeli-
hood score test statistic. In Section 3, asymptotic power functions of one-sided
and two-sided score tests are presented and they are compared with the goodness-
of-fit procedure in terms of asymptotic and exact power. In Section 4, we provide
approximate sample size formulae for designing a study using the score methods.
Sections 5 and 6 give an example and concluding remarks.

2. Test Statistic

Suppose that a single examiner rates each of n subjects twice, the 2" rating
without recollection of the 1% one as either positive (+) or negative (—). Alter-
natively, suppose that two examiners having the same probability of a positive
classification of a subject rate n subjects independently. In either case, the n
pairs of ratings can be divided into three categories: (+, +); (+, —) or (—, +);
and (—, —). The observed numbers of pairs in the categories are xp, x; and x
and their corresponding probabilities are P, P, and Py where the subscripts
represent the number of positive ratings in a pair. Denote the probabilities of a
positive and a negative rating as Pr(+)=p and Pr (—)=gq, respectively.
Define the kappa, x, as the correlation coefficient between the two ratings in
a pair, ie., k= (P, —p(pq) = (Py—q*)/(pqg), and consider the following
multinomial ~ model:  Py(x, p) =p* +pgx, Pi(x,p) =2pq(1 —x) and
Py(x, p) = ¢* + pqx (MAK, 1988; BLock and KRAMER, 1989). The log-likeli-
hood is the expressed as
InL(x, p) =x - In{p(p+qx)} +x; - In{2pg(1 — x)}
+x0 - In {q(q + px)}, (1)

where ¢ =1 — p. Kappa is the parameter of interest and p is a nuisance par-
ameter. The maximum likelihood estimators (MLE’s) of x and p are
K = (dxoxz — x3)/{(2x0 + x1) (2x2 +x1)} and p = (2x2 +x1)/(2n), respectively.
The asymptotic variance of & is var(k) = (1-x){(1—x) (1 —2x)
+x(2 -x)/(2pq)}/n (e.g., BLocH and KRAMER, 1989; HALE and FLEISS, 1993).
The first-order partial derivatives of the log-likelihood (1) are

Sc(k, p) =0 InL/0x = {x2/(p + gx) + %o/ (q + px) —n}/(1 —x).

Sy(x, p) =0 InL/0p = Ai/(pq) + A2/{(p + qx) (¢ +px)} where A; =x;+x
—(n+x)p and Ay = {x; — xok — (xg + x2) (1 — x) p} (1 — x). Consider a one
sided score test for null-hypothesis Hy: k = Ko against the alternative H:
x = k(> k). The MLE of p for a given x = x is obtained from S, (i, p) = 0
which leads to the solution of a cubic equation:

a0133+a‘p~2+a2137{-a3 =0,
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where
ap = 2n(1 — k)%, @ = —{3n(1 — o) + x2 — x0} (1 = Ko),
ap = 2xp + x1 — 2(2n — x) Ko + 1%}

and

ay = (x1 +x2) Ko -

Denoting b; = a;/ag for i=1,2 and 3, ¢; = by — b?/3 and ¢, = b3 — b1by/3

+2(by/3)*, we have the MLE as

p=-2(=ci/3)"* cos(n/3 +6/3) = b1/3, )
where
cos6 = (27)'7 - e2/{2¢1(=c1)'*}

by using a trigonometric method (USPENSKY, 1948). Let the score evaluated at
K =1%o and p = p be Sc(ko, p). The estimated asymptotic variance of the score
evaluated at ¥ = kg and p = p is 2npg/As, where

Az = {2pg(1 — o) (1 — 2Kg) + ko(2 — %o)} (1 = %) and g =1 — p.

Using the theory of BARTLETT (1953), the score statistic for testing k = Ko against
K = K (> Ko) is explicitly expressed as

2 = {Sx(xo, §)}/(2npG/As)"?, (3)

where  Sc(ko, p) = {x2/(P + gxo) + x0/(q + pxo) — n}/(1 —xp). Since the
2npG/As is a consistent estimator of the asymptotic variance of Sc{ko, p}, 2z is
asymptotically distributed as normal with mean zero and variance one under
K = Ko. For the one-sided score test, we have asymptotically E;(z;) > Eo(z;) =0
where k; > k. We reject Hp in favor of H; at level a if z; > z(1—q) Where z(1_q)
is the 100 x (1 — a) percentile point of the standardized normal distribution and
we do not reject Hy otherwise. For a two-sided score test for Hy: k = Ko against
H, : x # xo, we reject Ho at a level if 27 > z7;_, . For the special case of k =0,
we have p = (2x; +x;)/(2n) from S,(0, p) = 0. From (3), the score test for
Ko =0 against x;(> 0) is z; = {n'/?(dxx0 — x3)}/{(2x2 + x1) (2x0 + x1)}. The
square of z; is identical to the statistic for testing the Hardy-Weinberg law (F = 0)
by, e.g., SMrTH (1970). DONNER and ELiasziw (1992) have suggested a goodness-
of-fit (GOF) statistic for testing x = Ko against Kk = k;(> Kp) as

2

X = 3 = Biwo, D Plss D}, @
W%'ICI'CApz(KO, ﬁ) = ﬁZ + PgKo, Py (KO’ ﬁ) = Zﬁé(l - KO) and PO(KOa ﬁ) =é2 + 2pKo
with p = (2x, +x1)/(2n) and § = 1 — p. The statistic (4) is asymptotically a chi-
square with one degree of freedom under Hy. The GOF test is two-sided. The
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square of the score test is different from the GOF procedure except for the case of
testing ko = 0.

3. Power of Test

Consider the power of the score test and the GOF method of the strength of kappa
agreement.

3.1 Asymptotic power

From the score evaluated at k = xy and p = j, we have the expected score under
Hi:x=x as

Ei{Sc(xo, p)} =n(er +e2 = 1)/(1 ~xo) =n-D, (5)

where e; = p(p + qx1)/(p + gxo), €2 = q(q+px1)/(§ + pxy), and p and § are
the asymptotic limits, for large n, of p and § (Appendix 1). The asymptotic var-
iances of the score under Hy: x = kg and H;: Kk = K; are

varo{S«(xo, §)} = 2npg/[{254(1 ~ o) (1 — 2xy)
+x0(2-%0)} (1 —x%0)] =n-v,

. 2
var {Sc(xo, p)} = Ity =I5 /I3 =n-v,, (6)

where I*’s are defined in Appendix 2. The asymptotic power of the right-hand
score test at level a is :

Pr{Zs > Z(1-a) l H k= K1(> Ko)} =1- (I)(u) , | (7)

where u={z(1-a)-v(l)/2—n1/2-D}/v}/2 and @ is the cumulative standard

normal distribution. The asymptotic power of the two-sided score test of size
a is expressed as P,{z* > Ty | Hi ik =11} =1~ ®(u;) + O(u;) where

2 2
U = {Z(l—a/z) ~v(l)/2 —nl/2. D}/Vi/z and Uy = {Z(a/z) . V(l)/ —nl/2. D}/Vi/ i

Since z2 is asymptotically distributed as a non-central chi-square with one
degree of freedom and a non-centrality parameter,

}\.1 zn-Dz/V()7 - (8)

the asymptotic power of the test for given n and o can be found approximately
from tables of the cumulative non-central chi-square distribution (HAYNAM, GOVIN-
DARAJULA, and LEONE, 1970). Under H;, the GOF statistic is also a non-central
chi-square with one degree of freedom and non-centrality parameter

h=n- 20 {P(x1, p) — Pi(xo, )} /Pi(xo, p) =n- Aoy k1, 5)  (9)
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Table 1

Exact type 1 error probabilities corresponding to a nominal 0.05 level of one-sided or two-
sided score tests and the chi-square goodness-of-fit method.

p Ko one-sided two-sided GOF one-sided two-sided GOF
score test score test method score test score test method
n=20 n =50

1 1 .065 .065 .033 072 .044 .025
' 2 .046 .046 .042 .050 .032 .030
3 .078 .049 .049 063 .042 043

4 .046 .034 .017 .044 .043 .055

5 .053 .030 .043 .045 .049 .065

6 .035 .020 .057 .047 048 066

7 .005 .032 .080 .040 051 .053

3 .1 .036 .047 .047 046 .052 052
2 .038 052 .058 043 .048 .052

3 .037 051 .051 .047 .050 054

4 .047 044 061 .043 054 .055

.5 .034 .055 .056 042 .048 .052

6 .033 .051 .055 038 .053 .054

7 .045 .048 .049 .035 .050 055

.5 1 .044 .045 .045 041 .049 .049
2 .043 .050 .050 .047 .056 .056

3 .040 .050 .050 .034 .048 .048

4 .035 .049 .053 .039 .050 .050

.5 .024 .065 .065 .044 .050 .050

.6 .049 .049 .049 .044 .052 .052

i .038 .042 042 044 .047 .047

Average .041 .046 .050 .045 .048 051

(MITRA, 1958; MENG, and CHAPMAN, 1966; DONNER and ELiasziw, 1992). The
asymptotic powers involving (8) and (9) are derived by assuming that H; is in a
neighborhood of Hj for a large sample size.

Numerical calculations of asymptotic powers of the three tests for various val-
ues of n, p, xp and x; in Table 2 show that the one-sided score test is most power-

ful as expected and the two-sided score test has better power than the GOF proce-
dure. '

3.2 Exact power evaluation

The formulae for asymptotic power in Subsection 3.1 are applicable for a large
sample size. However, the available sample size of a reliability study in a typical
situation may not be large. In order to complete a power comparison, it is neces-
sary to have an exact power evaluation. Such an evaluation, also, enables us to
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Table 2

Exact and asymptotic power of one-sided score test, the two-sided score test and the chi-
square goodness-of-fit method for a = 0.05 (Those in parentheses are asymptotic values).

P Ko K; onesided two-sided GOF one-sided  two-sided  GOF
score test score test method score test score test method
n=20 n=2>50

1 2 4 .149(203)  .148(.136)  .133(.099) .259(.306) .197(.219)  .182(.176)
6 .338(.424) .335(.337) .312(.254) .601(.652) .542(.564)  .507(.535)
8 .601(.631) .600(.554) .583(.493) .886(.872) .870(.825)  .832(.867)
4 6 .141(.161)  .104(.098)  .039(.096) 232(.264) .189(.174)  .136(.166)
8- 328(.385)  .274(.278)  .122(.238) .635(.667) .591(.554)  .478(.504)
6 8 A15(.136)  .013(.072)  .010(.105) 281(.264) .176(.160)  .143(.192)
3 2 4 180(221)  .126(.140)  .115(.140) 366(.396) .262(.282)  .263(.279)
.6 .503(.546)  .407(.423) .377(412) B875(.871) .797(.793)  .797(.784)
.8 .869(.844)  .822(.758)  .786(.740) .998(.994) .995(.987)  .995(.984)
4 6 219(.216)  .105(.130)  .086(.148) 403(.414) .286(.289)  .281(.300)
8 .634(.595)  .433(.450)  .372(.443) .943(.932) .892(.869)  .885(.819)
6 8 207(.226)  .123(.127)  .091(.177) 485(.496) .350(.345)  .326(.370)
5 2 4 .209(.222)  .107(.137)  .107(.149) 416(.417)  .293(.295)  .293(.303)
.6 581(579)  .401(.442)  .400(.447) 925(.913) .863(.845)  .863(.823)
.8 935(.897)  .857(.816)  .856(.782) 1.000(.999) .999(.997)  .999(.991)
4 6 .202(.229) .071(.137)  .071(.164) .435(.455) .302(.322)  .302(.339)
.8 .668(.652)  .391(.496)  .387(.497) 973(.967) .939(.924)  .939(.870)
6 .8 295(.252)  .121(.143)  .117(.201) 591(.562) .421(.404)  .421(.424)

examine the adequacy of calculating asymptotic power for small sample size.
The exact power of the one-sided score test (EPS) for ko against x;(> o) at
level a is

EPS =} Pr(x|xi, p), (10)
XER

where R is a 2region of sampling points such that z; > z,.q) and
P.(x | ki, p) = n! [] {Pixi1, p)"/x:!}. The exact level corresponding to the nom-
=0

inal o of the test is ;special case of (10), i.e., k| = K. Exact type 1 error probabilities
and powers of the two-sided score test and the GOF method are similarly formulated.

The calculations of actual level of significance corresponding to a nominal.
o = 0.05 of the three tests for various values of p, kg and n are summarized in
Table 1. It shows that exact type 1 error probabilities of the tests are reasonably
close to the 0.05 level and the score tests are, in general, conservative when sam-
ple size is small. When a null-hypothesis, ko, approaches the upper limit of the
kappa coefficient, i.e., ko — 1, the right-hand sided score test becomes degenerate,
i.e., an exact type 1 error probability approaches zero, for small n. In fact, all
three tests are inapplicable for this extreme case.
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Using (10), the exact powers of the three tests at ‘a = 0.05 for various config-
uration of values of n, p, Ko, and x; are presented in Table 2. Powers for p = 0.7
and 0.9 are those for p = 0.3 and 0.1 in Table 2, i.e., they are symmetric about
p = 0.5. Exact power evaluation indicates that the one-sided score test is the most
powerful among the three tests and the two-sided score test is more powerful than
the GOF method. This is consistent with the conclusion based on asymptotic
powers. Considering the conservative nature of the score method and power per-
. formance, an order of preference is apparent particularly for a small sample size,
i.e., one-sided, two-sided score tests and GOF method. Numerical resuits in Table
2 show that asymptotic powers for small or moderate sample size are fairly close
to exact ones except some extreme cases.

4. Approximate Sample Size

From the asymptotic power function (7), an approximation to the sample size
required to achieve power, 1 — 3, for the one-sided score test at level a is ob-
tained by usin% a general relation (e.g., NaM, 1995): n-D =z q)- (nvo)l/2
+2z(1-p) - (nvl)1 2 where D, vo and v; are found from (5) and (6). The approxi-
mate sample size required for a specific power of the test is expressed as

n= {Z(l—a) "V(l)/z -+ Z(1-p) -Vi/z}z/Dz. (11)

The sample size is inversely related to power and also to departure of k; from .
From (8), an approximate sample size for power, 1 — 3, of the two-sided score
test at a is written as

n=M1,1-B,a) vo/D2, (12)

where A(1, 1 —f, a) is the value of the non-centrality parameter of the cumula-
tive non-central chi-square distribution with one degree of freedom corresponding
to power 1 — B and o level. DONNER and ELiasziw (1992) provided a sample size
using the GOF procedure as

n=)"(1’ l_ﬁ’ a)/A(K(), Klap)a (13)
where

A(xo, X1, p) = pq(x; — Ko)2 (814 82+ 83), 61 = q/(p + gx0),
92 =2/(1 — ko) and &3 = p/(q + p¥o)

from (9). For the special case of ko = 0, we have A(0, x;, p) = k% which is un-
related to the nuisance parameter.

Approximate sample sizes required for 80% power of the score tests and the GOF
method for various values of the nuisance parameter, with the null and alternative
hypotheses are calculated by formulae (11), (12), and (13) and are summarized in
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 Table 3

Approximate sample sizes required for 80% power of one-sided or two-sided score tests and
the chi-square goodness-of-fit test.

K Ky one-sided two-sided GOF one-sided two-sided GOF
score test score test method score test score test method
p=.1 p=.2
2 4 320 360 374 200 242 247
.6 83 83 94 50 58 62
4 .6 317 395 404 183 236 241
8 73 89 101 42 55 60
.6 8 232 324 335 132 188 192
9 91 136 149 52 80 85
p=.3 p=.3
2 4 163 206 208 144 188 188
6 40 51 52 35 47 47
4 .6 142 189 190 121 165 165
.8 33 46 48 28 41 41
6 .8 101 146 148 35 126 126
9 40 64 66 34 56 56

Table 3. The required sample size is larger for «; close to o and it is smaller as p
approaches 0.5. Sample sizes using the one-sided score test are noticeably smaller
than those using two-sided tests. Sample sizes for the two-sided score test are gener-
ally smaller than those for the GOF procedure, but when p is close to 0.5, these two
sample sizes are similar. As in the power table of Section 3, sample sizes for
p=0.9, 0.8 and 0.7 are the same as those for p = 0.1, 0.2 and 0.3 in Table 3. Re-
sults of sample size comparisons are closely related to those power comparisons.

5. An Example

Twenty pairs of siblings from different families in a community were examined
for HIV seropositivity. Of the twenty pairs, two, one and seventeen pairs were
classified as both positive, one positive and both negative, respectively: x, = 2,
x1 =1 and xop = 17 (HALE and FLEIss, 1993). The positive rate is p = 0.125 and
the estimate of the kappa coefficient, k = 0.77, suggests a high correlation within
a pair of siblings but the standard error, SE(x) = 0.22, is relatively large. Consid-
ering the small sample size of the study, we can demonstrate that the kappa within
a pair of sibling is fairly large, say, k > 0.25, and test Hy: x = 0.25 against H;:
Kk>025 at a=0.05 level. The one-sided score statistic is z, = 1.936
(p = 0.026) from (2) and (3) while the two-sided score and GOF statistics are
2 =3.75 (p =0.053) and X? = 3.18 (p = 0.075) from (4). The one-sided score
test rejects ko = 0.25 in favor of k > 0.25 but the other tests do not. Note that the
two-sided score test is more sensitive than the GOF method.
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Table 4

Approximate and exact sample sizes required for power = 1 — f of tests at o = 0.05 when
p = 0.125, kg = 0.4 and «; = 0.8 (the powers in parentheses are exact).

test 1-p=0.281 1-8=06
approx exact approx exact
sample size sample size sample size sample size
one-sided score 61(0.76) 62(0.81) 35(0.61) 34(0.60)
two-sided score 75(0.82) 71(0.80) 47(0.58) 48(0.64)
GOF 84(0.84) 76(0.81) 53(0.59) 55(0.61)

Consider the problem of designing a sibling study with reasonable power. We
want to find how many pairs are needed for power = 80% (and 60%) for a test at
o = 0.05 when p = 0.125, with the null and alternative as Hy: ko = 0.4 and H;:
¥; = 0.8. From (11), (12) and (13), the approximate sample sizes required for
80% power of one-sided, two-sided score and GOF tests are 61, 75 and 84 respec-
tively, see Table 4. Corresponding exact sample sizes are 62, 71 and 76. The
approximation for the one-sided score method is virtually the same as the exact
while exact sizes for the two-sided score and the GOF methods are 6% and 11%
greater than the corresponding exact size. For a 60% power, all three methods
provide accurate sample sizes. The saving in sample size using by the one-sided
score method is substantial. Required sample sizes using the two-sided score and
the GOF tests are 15% and 23% greater required when using the one-sided score
test for 80% power, and 41% and 61% large for 60% power.

6. Remarks

Nam (2000) presented an efficient interval estimate of kappa using the score meth-
od and showed that the expected length of its interval is shorter than that of a
method based on GOF procedure (see, DONNER and ELiasziw, 1992; HALE and
FLEISS, 1993). The advantage of the score method in interval estimation translates
to a gain for the score test over the GOF test in power and/or sample size. Interval
estimation and the corresponding test are consistent for both the score and GOF
methods but not for the usual Wald-type (crude) method. From the data in Sec-
tion 5, for example, 90% two-sided confidence intervals by the score and Wald-
type crude procedure are (0.319, 0.952) and (0.411, 1.132), respectively. The asso-
ciated significance-tests for the corresponding lower limits of the intervals yield
p-values; 0.05 and 0.14 for the score and crude tests, respectively. The former is
in agreement with the confidence coefficient while the latter isn’t. In addition, the
upper limit of the Wald-type crude interval is beyond the permissible bound for
kappa. It is important to examine whether the sample size required for a specific
power of the score test can also provide the desired precision in the corresponding
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interval estimation. Begin a paragraph the exact power requires heavy computation
which increases with sample size in a geometrical fashion. Unless the sample size
is small, the asymptotic power is reasonably close to the exact and can serve as a
good approximation. Intensive computation is involved in searching for the exact
minimum sample size for a given power. The sample size obtained by using
asymptotic power can be useful as the initial trial value to start searching for the
exact sample size, i.e., this initial value is, in general, close to the exact one. The
expression for the inbreeding coefficient, F, in genetic studies is identical to that
of the intraclass version of the kappa coefficient. In an analysis of phenotypic
data, we are interested in whether the Hardy-Weinberg law (F = 0) holds, e.g.,
YAasuba (1968). In studies involving the reliability of ratings, however, we are
concerned with reasonably good agreement of ratings and rarely interested in ne-
gative or zero kappa. The meaning of a kappa coefficient equal to zero (only
chance, or independent) or one (perfect agreement) is unique and not ambiguous
but interpretation of intermediate values in terms of degree of agreement is not
clear-cut. The specific value of a kappa coefficient for the null hypothesis is re-
lated to the nature of the study. In such reliability studies, we intend to show a
certain degree of intraclass agreement, i.e., the intraclass correlation coefficient is
greater than a desirable minimum value. The one-sided score test is best suited for
this purpose. Even when a two-sided procedure is required, the two-sided score meth-
od is more powerful than the GOF method. Finally, it is mentioned that the chance-
corrected measure, kappa estimate, is always smaller than the concordant rate.
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Appendix 1: Asymptotic limit of MLE of p

From Section 2, the asymptotic limit of p, 7, is found by solving a cubic equation:
ayp® +a\p* +ap+ady =0,
where
Cdy =210, gl = —{3(1 ko) +p — a} (1= o),
? —pgxi) Ko + %G and @5 = p{1 +q(1 - x1)} k.

Letting b’éz d/dy for i=1,2 and 3, ¢, = by — (b})*/3 and ¢, = b} - b\b,/3
+2(b}/3), we have the asymptotic limit of j:

p=—2(—c|/3)"* - cos (w/3 +6//3) —b}/3,

a,=2p-22-q
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where

cos 0’ = (27)'72- ¢, /{2¢} (—¢;)'*}

Appendix 2: An Approximation of Variance of S¢(ko, p) under Alternative

The second-order partial derivatives of the likehilhorsd are

& InL x2q* xop? X
ok 5+ 5+ 2 (>
p+gx)” (g+px)° (1-x)

82 InL — X2 _ X0
Ok Op (p+aqx)* (g+px)*]’

& InL X +Xx1 Xo+x X2 X0 ”
oz _< T ) - 2t 5 (1=%)"
D D2 q (p+qx)” (q+px)

Denote the elements of the information matrix are
Ij) = —E(0* InL/6%?),
Iy = —E(8* InL/0x Op) and Iy = —E{0* nL/8p*}.
Setting 7 = (8 InL/0k) — (I12/I) - (8 InL/8p), we have
var (T) = I — B,/ I (A2.1)

(e.g., BARTLETT, 1953). A test statisitc, 7’ , is obtained by replacing the nuisance
parameter in 7 by a consistent estimator of p for a given x = ko. T’ and T are
stochastically equivalent in large samples, and var (7”) = var(7) in probability
under k = Ko. Note that 7" = S,(xo, ) when a consistent estimator of p in 7" is
the MLE of p for a given x = .

Consider the partials evaluated at p = p and x = K, i.e.,

&8* InL X xop? X1
ol I IS R 7(>
p=p,x=ko (P+4dxo0)” (g+pxo)” (1—xo)
2
<§ﬂ> = _{ . x2~ 5 —— x(z St (A2.2)
K0P ) pei, et (P +dxo)* (g + pKo)

0*InL _ Xo+x1 X0+ x
op? T )
D p=D,x=kp p q

_ X2 X0 2
{(ﬁ+éko)2 @ +'13K0)2} (1 =)
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Recall that p and g are asymptotic limits of 5 and § (Section 3.1, Appendix 1)
The expectation of the negative of (A2.2) under H;: k =k, as j and § approach
to p and g in the limit converge in probability to

I = —El{(az lnL/aKz)p=ﬁ,K=K0} = n(qzq)l +172¢2 +2pq9s) ,
I, = -E{(8* nL/0x OP) pmp k=ryt = 1P — by), (A2.3)
I3 = —E{(&* lnL/apz)p=ﬁ,K=Ko} =n{fi4/p* +/b./7 + £/ P3)*}

where
&, =p(p+q1)/(P+q<0), &, =q(g+p)/(G+P%),
0y = (1-x)/(1-%0)*,  fi=25(F+qKo) (1 — ko) + 3,
fr=124(q +pxo) (1 —xo) +xg and f3 =2pq(1 - 2p3) (1 —x).

For x; in a neighborhood of ko, we may approximate the asymptotic variance of
T' under H;: x = x; as var;{Sc(ko, p)} ~ I —I"f%/l’;‘;_‘z from (A2.1) and (A2.3).
A result of simulations showed that a value of the approximated variance is satis-
factorily close to an empirical value when a difference between k¢ and k; isn’t
great.
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